An analytic approximation of the feasible space of metabolic networks

نویسندگان

  • Alfredo Braunstein
  • Anna Paola Muntoni
  • Andrea Pagnani
چکیده

Assuming a steady-state condition within a cell, metabolic fluxes satisfy an underdetermined linear system of stoichiometric equations. Characterizing the space of fluxes that satisfy such equations along with given bounds (and possibly additional relevant constraints) is considered of utmost importance for the understanding of cellular metabolism. Extreme values for each individual flux can be computed with linear programming (as flux balance analysis), and their marginal distributions can be approximately computed with Monte Carlo sampling. Here we present an approximate analytic method for the latter task based on expectation propagation equations that does not involve sampling and can achieve much better predictions than other existing analytic methods. The method is iterative, and its computation time is dominated by one matrix inversion per iteration. With respect to sampling, we show through extensive simulation that it has some advantages including computation time, and the ability to efficiently fix empirically estimated distributions of fluxes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Uncertainty analysis of hierarchical granular structures for multi-granulation typical hesitant fuzzy approximation space

Hierarchical structures and uncertainty measures are two main aspects in granular computing, approximate reasoning and cognitive process. Typical hesitant fuzzy sets, as a prime extension of fuzzy sets, are more flexible to reflect the hesitance and ambiguity in knowledge representation and decision making. In this paper, we mainly investigate the hierarchical structures and uncertainty measure...

متن کامل

Topological structure on generalized approximation space related to n-arry relation

Classical structure of rough set theory was first formulated by Z. Pawlak in [6]. The foundation of its object classification is an equivalence binary relation and equivalence classes. The upper and lower approximation operations are two core notions in rough set theory. They can also be seenas a closure operator and an interior operator of the topology induced by an equivalence relation on a u...

متن کامل

BEST APPROXIMATION SETS IN -n-NORMED SPACE CORRESPONDING TO INTUITIONISTIC FUZZY n-NORMED LINEAR SPACE

The aim of this paper is to present the new and interesting notionof ascending family of  $alpha $−n-norms corresponding to an intuitionistic fuzzy nnormedlinear space. The notion of best aproximation sets in an  $alpha $−n-normedspace corresponding to an intuitionistic fuzzy n-normed linear space is alsodefined and several related results are obtained.

متن کامل

ROUGH SET OVER DUAL-UNIVERSES IN FUZZY APPROXIMATION SPACE

To tackle the problem with inexact, uncertainty and vague knowl- edge, constructive method is utilized to formulate lower and upper approx- imation sets. Rough set model over dual-universes in fuzzy approximation space is constructed. In this paper, we introduce the concept of rough set over dual-universes in fuzzy approximation space by means of cut set. Then, we discuss properties of rough se...

متن کامل

A New Load-Flow Method in Distribution Networks based on an Approximation Voltage-Dependent Load model in Extensive Presence of Distributed Generation Sources

Power-flow (PF) solution is a basic and powerful tool in power system analysis. Distribution networks (DNs), compared to transmission systems, have many fundamental distinctions that cause the conventional PF to be ineffective on these networks. This paper presents a new fast and efficient PF method which provides all different models of Distributed Generations (DGs) and their operational modes...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017